## Supplementary material (for on-line publication)

The supplementary material includes two appendices. Appendix A contains the details of the estimation procedures. Appendix B presents additional Tables and Figures.

## Appendix A: The details of the estimation procedures

#### VAR models

To save on the notation we write process (9) in matrix form:

$$Y = X\Gamma + Z\Gamma_d + E = \begin{pmatrix} X & Z \end{pmatrix} \begin{pmatrix} \Gamma \\ \Gamma_d \end{pmatrix} + E = \tilde{X}\tilde{\Gamma} + E,$$
(A1)

where  $\Gamma_{nk\times n} = \begin{pmatrix} A_1 & A_2 & \dots & A_k \end{pmatrix}', \quad \Gamma_d = \Phi', \quad Y_{T\times n} = \begin{pmatrix} \Delta y_1 & \Delta y_2 & \dots & \Delta y_T \end{pmatrix}', \quad x_t = \begin{pmatrix} \Delta y'_{t-1} & \Delta y'_{t-2} & \dots & \Delta y'_{t-k} \end{pmatrix}',$   $X_{T\times nk} = \begin{pmatrix} x_1 & x_2 & \dots & x_T \end{pmatrix}', \quad E_{T\times n} = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \dots & \varepsilon_T \end{pmatrix}', \quad Z_{T\times l} = \begin{pmatrix} D_1 & D_2 & \dots & D_T \end{pmatrix}', \quad l \text{ denotes the number of deterministic components,}$ and  $\tilde{X} = \begin{pmatrix} X & Z \end{pmatrix}, \quad \tilde{\Gamma}' = \begin{pmatrix} \Gamma' & \Gamma'_d \end{pmatrix}.$ 

We impose normal-inverted Wishart prior for the parameters of model (A1):

- 1.  $\Sigma_{n \times n} \sim iW(S, q_{\Sigma})$ , where S is a PDS matrix and  $q_{\Sigma} \geq n$ ,
- 2.  $\Gamma_{nk \times n} | \Sigma \sim mN(0, \Sigma, \underline{\Omega}_{\Gamma})$ , where  $\underline{\Omega}_{\Gamma}$  is a PDS matrix of order nk,
- 3.  $\Gamma_d | \Sigma \sim mN(0, \Sigma, \underline{\Omega}_d)$ , where  $\underline{\Omega}_d$  is a PDS matrix of order *l*.

The above stated prior distributions for  $\Gamma$  and  $\Gamma_d$  lead to the following matrix normal prior  $\tilde{\Gamma}_{nk+l\times n}|\Sigma \sim mN(0,\Sigma,\underline{\Omega})$ , where  $\underline{\Omega} = \begin{pmatrix} \underline{\Omega}_{\Gamma} & 0\\ 0 & \underline{\Omega}_{d} \end{pmatrix}$ . In the presented research  $\Omega$  is of the form  $\begin{pmatrix} \underline{\nu}_{\Gamma} & I_{nk} & 0\\ nk & 0 \end{pmatrix}$ , where the perpendence  $\mu$  and  $\mu$  are estimated

 $\underline{\Omega} \text{ is of the form } \begin{pmatrix} \frac{\nu_{\Gamma}}{nk}I_{nk} & 0\\ 0 & \nu_{d}I_{l} \end{pmatrix}, \text{ where the parameters } \nu_{\Gamma} \text{ and } \nu_{d} \text{ are estimated} \\ (\nu_{\Gamma} \sim iG(s_{\Gamma}, n_{\Gamma}), \nu_{d} \sim iG(s_{d}, n_{d}), iG(s_{.}, n_{.}) \text{ denotes an inverted Gamma distribution} \\ \text{with parameters } s_{.} \text{ and } n_{.}, \text{ i.e. } p(\nu_{.}) \propto \nu_{.}^{-n_{.}-1} \exp(-\frac{s_{.}}{\nu_{.}})), \text{ so the hierarchical prior} \\ \text{structure is applied (see, e.g., Koop et al., 2010).}$ 

In our analysis we impose the following prior hyperparameters  $S = 0.01I_n$ ,  $q_{\Sigma} = n+2$ ,  $s_{.} = 2$ ,  $n_{.} = 3$  therefore  $E(\nu_{.}) = 1$ ,  $D(\nu_{.}) = 1$ .

The joint prior distribution is truncated by the stability condition imposed on the VAR parameters.

The assumed distributions belong to the so called conjugate priors family. It means that the posterior distributions are of the same form:

1. 
$$\Sigma|, Y \sim iW(S + E'E + \tilde{\Gamma}'\underline{\Omega}^{-1}\tilde{\Gamma}, q_{\Sigma} + nk + l + T)$$
, where  $E = Y - \tilde{X}\tilde{\Gamma}'$   
2.  $\tilde{\Gamma}|, Y \sim mN(\overline{\mu}_{\tilde{\Gamma}}, \Sigma, \overline{\Omega})$ , where  $\overline{\Omega} = (\underline{\Omega}^{-1} + \tilde{X}'\tilde{X})^{-1}, \overline{\mu}_{\tilde{\Gamma}} = \overline{\Omega}\tilde{X}'Y$ ,  
3.  $\nu_{\Gamma}|, Y \sim iG(s_{\Gamma} + \frac{1}{2}tr(nk\Sigma^{-1}\Gamma'\Gamma), n_{\Gamma} + \frac{n^{2}k}{2})$ ,  
4.  $\nu_{d}|, Y \sim iG(s_{d} + \frac{1}{2}tr(\Sigma^{-1}\Gamma'_{d}\Gamma_{d}), n_{d} + \frac{nl}{2})$ .

#### VAR models with reduced rank restrictions

The matrix form of the process (10) reads as follows:

$$Y = X\delta\gamma' + Z\Gamma_d + E,\tag{A2}$$

Where meaning of  $\Gamma_d$ ,  $Y_{T \times n}$ ,  $X_{T \times nk}$ ,  $E_{T \times n}$ ,  $Z_{T \times l}$ , l is left unchanged (see the explanation under equation (A1)).

To deal with the non-identification issues we employ the algorithm proposed by Koop et al. (2010) for the VEC models. This algorithm switches between two parameterisations:

$$\delta\gamma' = \delta O_{\Gamma}^{-1} O_{\Gamma} \gamma' \equiv DG', \tag{A3}$$

where  $O_{\Gamma}$  is an  $n - s \times n - s$  symmetric positive definite matrix. On the left-hand side of (A3) it is assumed that  $\delta$  has orthonormal columns with positive elements in the first row whiles the matrices on the right-hand side are left free, i.e.  $G \in \mathbb{R}^{n(n-s)}$  and  $D \in \mathbb{R}^{nk(n-s)}$ . Knowing this we can write model (A2) in the G-D parameterisation:

$$Y = XDG' + Z\Gamma_d + E = \begin{pmatrix} XD & Z \end{pmatrix} \begin{pmatrix} G' \\ \Gamma_d \end{pmatrix} + E = \tilde{X}_D\tilde{\Gamma}_G + E, \quad (A4)$$

where  $\tilde{X}_D = \begin{pmatrix} XD & Z \end{pmatrix}$ ,  $\tilde{\Gamma}'_G = \begin{pmatrix} G & \Gamma'_d \end{pmatrix}$ . For G and D we settle matrix normal priors of the following form:

- 1.  $D \sim mN(0, \frac{1}{nk}I_{n-s}, I_{nk})$ , which leads to non-informative prior for  $\delta$  and for the space spanned by it (see Chikuse, 2002),
- 2.  $G|\nu_G \sim mN(0, \nu_G I_{n-s}, \Sigma),$

3. 
$$\nu_G \sim iG(s_G, n_G)$$
.

The priors for the remaining parameters are left unchanged. It is easy to see that  $\tilde{\Gamma}_G | \Sigma, \nu_G, \nu_d \sim mN(0, \Sigma, \underline{\Omega}_G)$ , where  $\underline{\Omega}_G = \begin{pmatrix} \nu_G I_{n-s} & 0 \\ 0 & \nu_d I_l \end{pmatrix}$ .

Similarly to VAR models, the joint prior is truncated by the stability condition and the prior hyperparameters are the same, i.e.  $S = 0.01I_n$ ,  $q_{\Sigma} = n + 2$ ,  $s_{\cdot} = 2$ ,  $n_{\cdot} = 3$  therefore  $E(\nu_{\cdot}) = 1$ ,  $D(\nu_{\cdot}) = 1$ .

The full conditional posteriors (for the D - G parameterisation) are known, so it is possible to employ the Gibbs sampler in order to sample from the posterior distribution:

- 1.  $\Sigma|, Y \sim iW(S + E'E + \frac{1}{\nu_G}GG' + \frac{1}{\nu_d}\Gamma'_d\Gamma_d, q_\Sigma + n s + l + T),$
- 2.  $G|, Y \sim mN(vec(\overline{\mu}_G), \overline{\Omega}_G, \Sigma)$ , where  $\overline{\Omega}_G = (\frac{1}{\nu_G}I_{n-s} + D'X'XD)^{-1}$ ,  $\overline{\mu}_G = (Y Z\Gamma_d)'XD\overline{\Omega}_G$ ,
- 3.  $vec(D)|_{\cdot}, Y \sim N(\overline{\mu}_{vD}, \overline{\Omega}_{vD})$ , where  $\overline{\Omega}_{vD} = ((G'\Sigma^{-1}G \otimes X'X) + (nkI_{n-s} \otimes I_{nk}))^{-1}, \overline{\mu}_{vD} = \overline{\Omega}_{vD}vec(X'(Y Z\Gamma_d)\Sigma^{-1}G),$
- 4.  $\Gamma_d|_{,Y} \sim mN(vec(\overline{\mu}_d), \Sigma, \overline{\Omega}_d)$ , where  $\overline{\Omega}_d = (\frac{1}{\nu_d}I_l + Z'Z)^{-1}$ ,  $\overline{\mu}_d = \overline{\Omega}_d Z'(Y XDG')$ ,
- 5.  $\nu_G|_{,Y} \sim iG(s_G + \frac{1}{2}tr(G'\Sigma^{-1}G), n_G + \frac{n(n-s)}{2}),$

6. 
$$\nu_d|_{,Y} \sim iG(s_d + \frac{1}{2}tr(\Sigma^{-1}\Gamma'_d\Gamma_d), n_d + \frac{nl}{2}).$$

Samples from the posterior distributions of  $\delta$  and  $\gamma$  can be obtained by using transformations:  $\delta = D(D'D)^{-\frac{1}{2}}O$  and  $\gamma = G(D'D)^{\frac{1}{2}}O$ , where  $O = diag(\pm 1)$  helps to obtain positive elements in the first row of  $\delta$ .

#### Bayesian model comparison

To obtain the marginal data density, needed for the model comparison we have to integrate the parameters. Some of them can be integrated analytically ( $\Gamma$  in the model (A1), G in the model (A4) and  $\Gamma_d$ ,  $\Sigma$  in both models), which leads us to the following results:

• the data density conditional on  $\nu_{\Gamma}$  and  $\nu_d$  in the VAR model (A1)

$$p(Y|\nu_{\Gamma},\nu_{d}) = \pi^{-\frac{nT}{2}} \prod_{i=1}^{n} \frac{\Gamma[(q_{\Sigma}+T+1-i)/2]}{\Gamma[(q_{\Sigma}+1-i)/2]} |S|^{\frac{q_{\Sigma}}{2}} |\underline{\Omega}|^{-\frac{n}{2}} |\overline{\Omega}|^{\frac{n}{2}} \times |S+Y'M_{\tilde{X}}Y + \hat{\Gamma}'\tilde{X}'\tilde{X}\overline{\Omega}\underline{\Omega}^{-1}\hat{\Gamma}|^{-\frac{q_{\Sigma}+T}{2}},$$
(A5)

where  $M_{\tilde{X}} = I_T - \tilde{X}(\tilde{X}'\tilde{X})^{-1}\tilde{X}', \ \hat{\Gamma} = (\tilde{X}'\tilde{X})^{-1}\tilde{X}'Y$  and  $\Gamma(\alpha)$  is the gamma function, that is the function defined by the integral:  $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} \exp(-x) dx$  for x > 0 (see e.g. Bauwens et al., 1999);

• the data density conditional on D,  $\nu_G$  and  $\nu_d$  in the VAR models with common serial correlation (A4):

$$p(Y|D,\nu_G,\nu_d) = \pi^{-\frac{nT}{2}} \prod_{i=1}^n \frac{\Gamma[(q_{\Sigma}+T+1-i)/2]}{\Gamma[(q_{\Sigma}+1-i)/2]} |S|^{\frac{q_{\Sigma}}{2}} |\underline{\Omega}_G|^{-\frac{n}{2}} |\overline{\Omega}_G|^{\frac{n}{2}} \times |S+Y'M_{\tilde{X}_D}Y + \hat{\Gamma}'_G \tilde{X}'_D \tilde{X}_D \overline{\Omega}_G \underline{\Omega}_G^{-1} \hat{\Gamma}_G|^{-\frac{q_{\Sigma}+T}{2}}, \quad (A6)$$

where  $M_{\tilde{X}_D} = I_T - \tilde{X}_D (\tilde{X}'_D \tilde{X}_D)^{-1} \tilde{X}'_D$ ,  $\hat{\Gamma}_G = (\tilde{X}'_D \tilde{X}_D)^{-1} \tilde{X}'_D Y$  and  $\overline{\Omega}_G = (\tilde{X}'_D \tilde{X}_D + \underline{\Omega}_G^{-1})^{-1}$ .

To obtain marginal data density in the compared models, we have to integrate  $\nu_{\Gamma}$ ,  $\nu_G$ ,  $\nu_d$  and D from the above stated equations, for which we employ the arithmetic mean estimator.

# Appendix B

Below we provide additional information in Tables and Figures that is summarized in the main text.

| Variable                              | Description                                                                                                                                                                                                                                                                                                                                                                                                       | Source                                                        |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Real GDP                              | Gross domestic product at market prices, chain<br>linked volumes, index 2005=100, seasonally and<br>calendar adjusted data; for Bulgaria (1998:1-<br>1998:4) and Croatia (1998:1-1999:4) unadjusted<br>data data from ESA 1995 (Tramo/seats method<br>used for seasonal adjustment); for Poland<br>(1998:1-2001:4) data from ESA 1995; for Slovakia<br>seasonally adjusted data but not calendar adjusted<br>data | Eurostat                                                      |
| Nominal<br>interest rate              | Three-month money market nominal interest rate;<br>for Bulgaria (1998:1-1998:2 and 1999:1-1999:2)<br>and Slovenia (1998:1)the deposit rate used; for<br>Croatia (1998:1-2000:1) lending rate used; average<br>of four adjacent quarters used for missing value for<br>Hungary (2004:3).                                                                                                                           | Eurostat and<br>IMF/IFS (for<br>deposit and<br>lending rates) |
| Nominal<br>exchange<br>rate           | Quarterly average nominal exchange rate index $(2005 = 100)$ ; an increase is an appreciation of domestic currency against the euro.                                                                                                                                                                                                                                                                              | based on<br>Eurostat data                                     |
| Price level                           | Harmonized index of consumer prices (HICP);<br>monthly data used to calculate quarterly averages.                                                                                                                                                                                                                                                                                                                 | Eurostat                                                      |
| Relative<br>output                    | The log-difference between domestic and the euro area real GDPs.                                                                                                                                                                                                                                                                                                                                                  | based on<br>Eurostat data                                     |
| Real<br>interest rate<br>differential | The difference between domestic and euro are real<br>interest rates. The real interest rate defined as a<br>difference between nominal interest rate and actual<br>HICP inflation.                                                                                                                                                                                                                                | based on<br>Eurostat data                                     |
| Real<br>exchange<br>rate              | The (log of the) real exchange rate calculated as<br>the nominal exchange rate corrected for price ratio;<br>its rise means an appreciation of domestic currency<br>against the euro in real terms                                                                                                                                                                                                                | based on<br>Eurostat data                                     |
| Relative<br>price level               | The log-difference between domestic and euro area price levels.                                                                                                                                                                                                                                                                                                                                                   | based on<br>Eurostat data                                     |

### Table B1: Data description

|                       | Slovenia   | Managed<br>floating <sup>a)</sup>                  | Crawling<br>band<br>Feb 1, 2002<br>Pegged<br>band <sup>b)</sup><br>June 27, 2004                 | Currency<br>union<br>Jan 1, 2007            |                                                        |                                                                          |                               | s adopted before       | ctive Feb 2, 2009<br>9-2015.                                                                                                                      |
|-----------------------|------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| $2000-2015^{\dagger}$ | Slovakia   | Managed<br>floating <sup>a)</sup>                  | Pegged<br>band <sup>b)</sup><br>Nov 25, 2005                                                     |                                             |                                                        | Currency<br>union<br>Jan 1, 2009                                         |                               | e, the regime wa       | ge rate.'<br>the regime: effec<br>n methodology.<br>s issues from 199                                                                             |
| opean countries,      | Romania    | Managed<br>floating <sup>a)</sup>                  | Crawling<br>band<br>June 30, 2001<br>Managed<br>floating <sup>a)</sup><br>Nov 2, 2004            |                                             | Floating <sup>*</sup><br>Apr 30, 2008                  |                                                                          |                               | ; if there is no dat   | In for the exchang<br>* No change in<br>of the classificatio<br><i>estrictions</i> , variou                                                       |
| and Eastern Eur       | Poland     | Crawling<br>band                                   | Independent-<br>ly floating<br>Apr 12, 2000                                                      |                                             | Free floating <sup>*</sup><br>Apr 30, 2008             | Floating<br>Sept 23, 2011                                                |                               | tion of the regime     | predetermined pated arrangement. <sup>7</sup><br>e to the revision of and Exchange Ru                                                             |
| imes in Central a     | Hungary    | Crawling<br>band                                   | Pegged<br>band <sup>b)</sup><br>Oct 1, 2001                                                      | Independent-<br>ly floating<br>Feb 26, 2008 | Free floating <sup>*</sup><br>Apr 30, 2008             | Floating<br>Mar 1, 2009                                                  | Free floating<br>Dec 31, 2011 | ds to the introduc     | floating with no j<br><sup>c)</sup> 'Other manag<br>April 30, 2008, du<br><i>nge Arrangements</i>                                                 |
| xchange rate reg      | Croatia    | Managed<br>floating <sup>a)</sup><br>Sept 30, 1999 |                                                                                                  | Conventional<br>peg<br>Sept 1, 2006         | Stabilized<br>arrangement <sup>*</sup><br>Apr 30, 2008 | Other<br>managed <sup>c)</sup><br>Jan 1, 2009<br>C <sup>*awl</sup> -like | arrangement<br>Jun 17, 2010   | gement correspon       | <ul> <li>A: <sup>a)</sup> 'Managed<br/>orizontal bands.'</li> <li><sup>1</sup> retroactively to.</li> <li><sup>1</sup> Report on Excha</li> </ul> |
| Table B2: E           | Czech Rep. | Managed<br>floating <sup>a)</sup>                  | Independent-<br>ly floating<br>June 30, 2001<br>Managed<br>floating <sup>a)</sup><br>Jan 1, 2002 | Independent-<br>ly floating<br>Jan 1, 2006  | Free floating <sup>*</sup><br>Apr 30, 2008             | Other<br>managed <sup>c)</sup><br>Nov 7, 2013<br>Stabilized              | arrangement<br>Nov 19, 2013   | ate below the arran    | es in the AREAEJ<br>ange rate within ho<br>n has been change<br>on the IMF Annua.                                                                 |
|                       | Bulgaria   | Currency<br>board<br>July 1, 1997                  |                                                                                                  |                                             |                                                        |                                                                          |                               | $\frac{Notes:}{2000.}$ | Formal categori<br><sup>b)</sup> 'Pegged exchi<br>the classification<br><i>Source</i> : based o                                                   |

| Country    | LYS classification <sup>a)</sup> |                                  |              | DPS classification <sup>b)</sup> |         |              |  |
|------------|----------------------------------|----------------------------------|--------------|----------------------------------|---------|--------------|--|
|            | $pegger^{c)}$                    | $\mathrm{floater}^{\mathrm{d})}$ | $other^{e)}$ | pegger                           | floater | $other^{f)}$ |  |
| Bulgaria   | 81                               | 0                                | 19           | 100                              | 0       | 0            |  |
| Czech Rep. | 0                                | 100                              | 0            | 0                                | 94      | 6            |  |
| Croatia    | 44                               | 56                               | 0            | 71                               | 18      | 12           |  |
| Hungary    | 13                               | 88                               | 0            | 12                               | 88      | 0            |  |
| Poland     | 13                               | 88                               | 0            | 0                                | 94      | 6            |  |
| Romania    | 25                               | 75                               | 0            | 12                               | 88      | 0            |  |
| Slovakia   | $13^{ m g)}$                     | 81                               | 6            | $59^{ m h)}$                     | 41      | 0            |  |
| Slovenia   | $63^{i)}$                        | 38                               | 0            | 88                               | 0       | 12           |  |

Table B3: Relative frequency of exchange rate regimes in CEE countries under alternative classifications (in percent)

Notes: <sup>a)</sup> Levy-Yeyati and Sturzenegger classification, includes years 1998-2013. <sup>b)</sup> Dąbrowski, Papież and Śmiech classification, includes years 1998-2014. <sup>c)</sup> Includes 'peg' and 'crawling peg.' <sup>d)</sup> Includes 'float' and 'dirty float.' <sup>e)</sup> Includes 'inconclusive' and 'unclassified.' <sup>f)</sup> Includes 'inconclusive.' <sup>g)</sup> It rises to 63 if years in the ERM II and euro area included into a 'peg' category. <sup>a)</sup> Levy-Yeyati and Sturzenegger classification, includes years 1998-2013.

<sup>h)</sup> It rises to 82 if years in the euro area included into a 'peg' category.

<sup>i)</sup> It rises to 94 if years in the ERM II and euro area included into a 'peg' category.

Source: based on data from Levy-Yeyati and Sturzenegger (2016) and Dąbrowski et al. (in press).

| Country    | Income per<br>capita <sup>a)</sup> | Current<br>account <sup>b)</sup> | CPI<br>Inflation <sup>c)</sup> | $\begin{array}{c} \text{Unemployment} \\ \text{rate}^{\text{d})} \end{array}$ | Absence of<br>corruption <sup>e)</sup> |
|------------|------------------------------------|----------------------------------|--------------------------------|-------------------------------------------------------------------------------|----------------------------------------|
| Bulgaria   | 14,888                             | -7.7                             | 4.1                            | 9.6                                                                           | 0.41                                   |
| Czech Rep. | $26,\!540$                         | -1.8                             | 2.1                            | 6.4                                                                           | 0.54                                   |
| Croatia    | 20,083                             | -2.6                             | 2.4                            | 13.0                                                                          | 0.63                                   |
| Hungary    | $21,\!972$                         | -1.6                             | 3.8                            | 8.9                                                                           | 0.57                                   |
| Poland     | 20,905                             | -3.8                             | 2.2                            | 10.2                                                                          | 0.66                                   |
| Romania    | $17,\!619$                         | -6.2                             | 4.9                            | 6.8                                                                           | 0.51                                   |
| Slovakia   | 24,414                             | -3.3                             | 2.3                            | 13.0                                                                          | n.a.                                   |
| Slovenia   | $28,\!371$                         | 0.5                              | 2.1                            | 7.3                                                                           | 0.60                                   |
| Averages:  |                                    |                                  |                                |                                                                               |                                        |
| All        | 21,849                             | -3.3                             | 3.0                            | 9.4                                                                           | 0.56                                   |
| Pegs       | $21,\!939$                         | -3.3                             | 2.7                            | 10.7                                                                          | 0.52                                   |
| Floats     | 21,759                             | -3.3                             | 3.2                            | 8.1                                                                           | 0.59                                   |

Table B4: Basic macroeconomic characteristics of CEE countries, 2005-2015

*Notes:* <sup>a)</sup> Gross national income per capita converted to (constant 2011) international dollars using purchasing power parity rates.

<sup>b)</sup> In percent of GDP. <sup>c)</sup> The annual percentage change of consumer price index. <sup>d)</sup> In percent of the labour force (International Labour Organization estimate). <sup>e)</sup> One of the subindices of the World Justice Project Rule of Law Index that measures the extent to which countries adhere to the rule of law in practice. It ranges from 0 (the lowest score) to 1 (the highest score). *Source:* all data from the *World Development Indicators* database except for the absence of

Source: all data from the World Development Indicators database except for the absence of corruption index that is from the World of Justice Project website: www.worldjusticeproject. org.









(b) Minimum and maximum

Figure B2: Capital account openness in CEE countries, 1998-2015 Notes: The Chinn-Ito index ranges from 0 to 1. Source: Data from the dataset developed by Chinn and Ito (2008).



Figure B3: Impulse response functions of the real exchange rate in CEE countries to real shocks



Figure B4: Impulse response functions of the real exchange rate in CEE countries to nominal shocks

#### Cluster Dendrogram











Figure B6: Impulse response functions of the relative output in CEE floaters against Poland



Figure B7: Impulse response functions of the relative output in CEE peggers against Poland \$Notes:\$ For Slovakia-Poland pair see Figure 2 in the main text.

## References

- Bauwens L, Lubrano M, Richard J F, 1999. Bayesian Inference in Dynamic Econometric Models. Oxford University Press.
- Chikuse, Y, 2002. In: Statistics on special manifolds, Lecture Notes in Statistics, 174. Springer-Verlag, New York.
- Chinn, M, Ito, H, 2008. A new measure of financial openness. J. Comp. Pol. Anal. 10 (3), 309-322.
- Dąbrowski, M A, Papież, M, Śmiech, S, in press. Classifying de facto exchange rate regimes of financially open and closed economies: A statistical approach. J. Int. Trade Econ. Dev. In press.
- Ilzetzki, E, Reinhart, C M, Rogoff, K S, 2019. Exchange arrangements entering the 21st century: which anchor will hold?. Q. J. Econ. 134 (2), 599-646.
- IMF, various issues. Annual Report on Exchange Arrangements and Exchange Restrictions. International Monetary Fund, Washington, D.C.
- Koop, G, León-González, R, Strachan, R, 2010. Efficient posterior simulation for cointegrated models with priors on the cointegration space. *Econom. Rev.* 29, 224-242.
- Levy-Yeyati, E, Sturzenegger, F, 2016. Classifying Exchange Rate Regimes: 15 Years Later. CID Faculty Working Paper No. 319.